Ripples Make Waves: Binding Structured Activity and Plasticity in Hippocampal Networks

نویسندگان

  • Josef H. L. P. Sadowski
  • Matthew W. Jones
  • Jack R. Mellor
چکیده

Establishing novel episodic memories and stable spatial representations depends on an exquisitely choreographed, multistage process involving the online encoding and offline consolidation of sensory information, a process that is largely dependent on the hippocampus. Each step is influenced by distinct neural network states that influence the pattern of activation across cellular assemblies. In recent years, the occurrence of hippocampal sharp wave ripple (SWR) oscillations has emerged as a potentially vital network phenomenon mediating the steps between encoding and consolidation, both at a cellular and network level by promoting the rapid replay and reactivation of recent activity patterns. Such events facilitate memory formation by optimising the conditions for synaptic plasticity to occur between contingent neural elements. In this paper, we explore the ways in which SWRs and other network events can bridge the gap between spatiomnemonic processing at cellular/synaptic and network levels in the hippocampus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Midline thalamic neurons are differentially engaged during hippocampus network oscillations

The midline thalamus is reciprocally connected with the medial temporal lobe, where neural circuitry essential for spatial navigation and memory formation resides. Yet, little information is available on the dynamic relationship between activity patterns in the midline thalamus and medial temporal lobe. Here, we report on the functional heterogeneity of anatomically-identified thalamic neurons ...

متن کامل

Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network

The default mode network (DMN) is a commonly observed resting-state network (RSN) that includes medial temporal, parietal, and prefrontal regions involved in episodic memory [1-3]. The behavioral relevance of endogenous DMN activity remains elusive, despite an emerging literature correlating resting fMRI fluctuations with memory performance [4, 5]-particularly in DMN regions [6-8]. Mechanistic ...

متن کامل

Ripples in the medial temporal lobe are relevant for human memory consolidation.

High-frequency oscillations (ripples) have been described in the hippocampus and rhinal cortex of both animals and human subjects and have been linked to replay and consolidation of previously acquired information. More specifically, studies in rodents suggested that ripples are generated in the hippocampus and are then transferred into the rhinal cortex, and that they occur predominantly durin...

متن کامل

Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity.

Hippocampal sharp waves (SPWs) and associated fast ("ripple") oscillations (SPW-Rs) in the CA1 region are among the most synchronous physiological patterns in the mammalian brain. Using two-dimensional arrays of electrodes for recording local field potentials and unit discharges in freely moving rats, we studied the emergence of ripple oscillations (140-220 Hz) and compared their origin and cel...

متن کامل

Minocycline improves memory in a passive avoidance task following cerebral ischemia-reperfusion by enhancing hippocampal synaptic plasticity and restoring antioxidant enzyme activity in rats

Introduction: Oxidative stress plays a crucial role in the impairment of synaptic plasticity following cerebral ischemia which ultimately results in memory dysfunction. Hence, application of antioxidant agents could be beneficial in the management of memory deficit after brain ischemia. Minocycline is a tetracycline antibiotic with antioxidant effect. The main objective of this work was to asse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011